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Abstract: The stool antigen test (SAT) represents an attractive alternative for detection of Helicobac-
ter pylori. The aim of this study was to assess the accuracy of a new SAT, the automated LIAISON®

Meridian H. pylori SA based on monoclonal antibodies, compared to the defined gold standard
13C-urea breath test (UBT). This prospective multicentre study (nine Spanish centres) enrolled pa-
tients ≥18 years of age with clinical indication to perform UBT for the initial diagnosis and for
confirmation of bacterial eradication. Two UBT methods were used: mass spectrometry (MS) includ-
ing citric acid (CA) or infrared spectrophotometry (IRS) without CA. Overall, 307 patients (145 naïve,
162 with confirmation of eradication) were analysed. Using recommended cut-off values (negative
SAT < 0.90, positive ≥ 1.10) the sensitivity, specificity, positive predictive value, negative predictive
value and accuracy were 67%, 97%, 86%, 92% and 91%, respectively, obtaining an area under the
receiver operating characteristic (ROC) curve (AUC) of 0.85. Twenty-eight patients, including seven
false positives and 21 false negatives, presented a discordant result between SAT and UBT. Among the
21 false negatives, four of six tested with MS and 11 of 15 tested with IRS presented a borderline UBT
delta value. In 25 discordant samples, PCR targeting H. pylori DNA was performed to re-assess posi-
tivity and SAT accuracy was re-analysed: sensitivity, specificity, positive predictive value, negative
predictive value, accuracy and AUC were 94%, 97%, 86%, 99%, 97% and 0.96, respectively. The new
LIAISON® Meridian H. pylori SA SAT showed a good accuracy for diagnosis of H. pylori infection.
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1. Introduction

Helicobacter pylori (H. pylori) is a highly prevalent worldwide infection and is the
main cause not only of gastritis, but also of peptic ulcer and gastric cancer. Therefore, an
accurate diagnosis remains crucial [1]. H. pylori screening and eradication is indicated in
several clinical contexts including gastric cancer precursor lesions, peptic ulcer disease and
gastric mucosa-associated lymphoid tissue lymphoma, among others [2,3]. However, more
recently, consensus has been reached on eradicating H. pylori regardless of the associated
clinical condition [4].

Although different methods have been established to detect H. pylori infection, iden-
tifying H. pylori-infected patients is a challenge. H. pylori infection diagnostic methods
are classically divided into invasive and non-invasive. Invasive methods are based on
the detection of the organism in the stomach by means of gastric biopsy samples (histol-
ogy, rapid urease test (RUT), culture and molecular diagnostic methods), which require
an endoscopy. This strategy should be considered in patients with alarm symptoms or
in older (i.e., >50–55 years) patients. On the other hand, non-invasive methods do not
require an endoscopic examination and are currently the most widely used diagnostic
techniques [5–7].

Uninvestigated dyspepsia represents one-quarter of primary care referrals to the
gastroenterologist in Spain [8]. In the absence of alarm symptoms, and in those younger
than 50–55, a “test-and-treat” strategy would be appropriate for diagnosis, preferring
non-invasive tests such as urea breath test (UBT) or stool antigen test (SAT) rather than
prescribing proton pump inhibitors (PPIs) or endoscopy [9–11].

The UBT has been classically considered the preferred non-invasive technique due
to its excellent sensitivity and specificity (>95–100%) demonstrated in countless studies
and meta-analyses. Moreover, UBT has been the most widely used diagnostic method
in recent years, making it an optimal gold standard [12,13]. Although UBT is safe, some
disadvantages have been described: point-of-care testing, significant consumption of
patient time (30–60 min), fasting requirement, the high cost of qualified personnel or
sending the collected samples to an analytical laboratory [14]. In addition, there are
physical difficulties for certain populations (e.g., children and disabled) in performing the
test [15].

The SAT is a low-cost diagnostic method, without the previously described disadvan-
tages, suitable for at-risk populations [16]. Indeed, some studies have suggested its better
cost-effectiveness compared to other techniques [17,18].

Two types of SATs have been described: the enzyme immunoassays, such as enzyme-
linked immunosorbent assay (ELISA) or the more recently developed, chemiluminescence-
based immunoassays (CLIA), and “rapid” or “in-office” tests (immunochromatography assay
or ICA). These methods can be based either on polyclonal or monoclonal antibodies [6,16].
With regard to “rapid” or “in-office” tests, controversial results have been reported [19] and
they are not recommended in clinical practice guidelines due to their limited accuracy [20].

The diagnostic performance of different SATs is heterogeneous, although there is no
doubt that the use of monoclonal antibodies has resulted in a higher accuracy compared to
polyclonal antibodies, both in adults and children [15,19,21].

The high accuracy of SAT has been widely demonstrated in most reviews and meta-
analyses, providing a sensitivity above 80–90%. Additionally, a sensitivity of 83% has
been reported in a very recent Cochrane meta-analysis, with no discrimination between
monoclonal and polyclonal antibodies [12], while other studies evaluating the monoclonal
technique showed a higher sensitivity and specificity (96.2% and 94.7%, respectively), in
the paediatric population [21].
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Another study, also in children, showed a sensitivity and specificity of 97% [15].
A meta-analysis by Gisbert et al. reported sensitivity and specificity data >93% both be-
fore and after H. pylori treatment [19]. Additionally, a clinical review by the Canadian
Drug Agency described a sensitivity and specificity of 90.0–92.4% and 91.0–100%, respec-
tively, with monoclonal SAT [22]. Therefore, SAT is currently recommended by the main
international guidelines as a valid and reliable diagnostic method [2,20,23].

As previously mentioned, the CLIA technique for the identification of H. pylori in
faeces has proven similar accuracy to that reported for both ELISA and the best performing
lateral flow immunoassays, with additional advantages [24].

In the current study, we evaluated the accuracy of the LIAISON® Meridian H. pylori
SA test for the diagnosis and confirmation of eradication of H. pylori infection. This new test
is a fully automated, time saving, objective and traceable CLIA, which detects the presence
of H. pylori antigen in human stools using unique monoclonal antibodies.

2. Materials and Methods
2.1. Patients and Design

This is a prospective, comparative, multicentre study that aimed to evaluate the accu-
racy of the new LIAISON® Meridian H. pylori SA stool antigen test. Nine Spanish centres
participated in the study. Consecutive adult patients with indication of H. pylori infection
primary diagnosis or confirmation of the bacterial eradication according to standard clinical
practice were enrolled between November 2019 and May 2021. Patients were included for
both pre- and post-treatment tests, and the signing of an informed consent for each test
was required.

Inclusion criteria were indication to perform an H. pylori infection diagnosis; capacity
and willingness to give written informed consent; prior prescribed 13C-UBT; and, for
confirmation of eradication (if the patient was included for post-eradication treatment
diagnosis), performance of the test at least four weeks after the treatment was discontinued.
Exclusion criteria were age below 18 years; advanced chronic disease that would not allow
the patient to complete follow-up or attend follow-up visits; previous gastric surgery;
alcohol or drug abuse; antibiotic or bismuth salts consumption four weeks prior to testing;
and PPI intake two weeks prior to testing.

The study protocol was approved by the Ethics Committee of all participant hospitals.

2.2. Stool Antigen Test

Patients were instructed to obtain a faecal sample within 24–36 h either before or after
the UBT was performed.

H. pylori was detected using a new automated LIAISON® Meridian H. pylori SA assay
(REF 318200, DiaSorin, Stillwater, MN, USA) (Supplementary File S1). The test is a CLIA
in sandwich format that uses novel monoclonal antibodies for capture and detection of
H. pylori stool antigen. Testing was performed following the manufacturer’s instructions at
the laboratory of Hospital de La Princesa (Madrid, Spain). Specimens had to be stored at
least at −20 ◦C.

The process was performed automatically by the LIAISON® XL analyser (DiaSorin
SpA, Saluggia, Italy). Two hundred microlitres of the diluted sample (mixture of sample
diluent and stool) was incubated with paramagnetic particles coated with capture anti-
bodies. Isoluminol conjugated antibodies for H. pylori antigen were subsequently added
and incubated and the unbound material was washed. Then the flash chemiluminescent
reaction was initiated and chemiluminescent light was measured by a photomultiplier.
Relative light units (RLU) were recorded. RLU were proportional to the concentration of
the H. pylori stool antigen present.

Specimens were classified as negative, equivocal or positive based on their index (<0.9,
0.9–1.1 and >1.1, respectively). The trained operator was unaware of the results of the
reference tests.
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Equivocal LIAISON® results (CLIA values of 0.9–1.1) were solved by immediately
repeating SAT on another sample from the same specimen using a kit from a different batch.
This latter result was the one valid for analysis.

2.3. Urea Breath Test

The gold standard was defined by the 13C-UBT. Two UBT methods were used ac-
cording to the available and standard clinical practice from the participating centres. The
professionals analysing the UBT test were unaware of the SAT results.

2.3.1. Isotope Ratio Mass Spectrometry (IRMS)

The commercial test TAU-KIT® (Isomed, S.L., Madrid, Spain) was used. The patient
had to fast at least six hours before the test was performed. Initially, a citric acid solution
(4.2 g, Citral pylori®) dissolved in 200 mL of water was administered. After 10 min, samples
were collected to determine the reference value of the test. The urea solution was prepared
by dissolving a 100 mg tablet of this substrate in 125 mL of water. After 30 min following
the administration of the urea solution, samples of exhaled breath were again collected.
Samples were classified as either negative, unclear or positive based on delta values (<4‰,
4–5‰ and 5‰, respectively).

Patients with unclear UBT results (delta values between 4‰ and 5‰ measured by
mass spectrometer) were asked to repeat both the UBT and the stool sample at least four
weeks after testing. These latter results were used for the analysis.

2.3.2. Non-Dispersive Isotope-Selective Infrared Spectrometry (NDIRS)

The UBT was performed using UBTest 100 mg (Ferrer Internacional, Barcelona, Spain).
Determinations were performed in accordance with the manufacturer’s specifications. The
patient had to fast at least eight hours before the test performance. A basal breath sample
was collected by blowing into a specially designed bag. After this, patient swallowed a
pill of 100 mg of 13C-labelled urea in 100 mL of water, and 20 min later filled a second
breath bag. Samples were immediately processed by NDIRS (POConeTM or POConePlus,
Infrared Spectrophotometer, Otsuka Pharmaceutical, Tokyo, Japan). In accordance with the
manufacturer’s specifications, an increase in the proportion 13C/12C (∆13CO2 (‰)) of 2.5‰
or more after urea intake was considered as indicative of H. pylori infection. No unclear
values are described by the manufacturer.

2.4. H. pylori Detection by PCR

Faecal samples with discrepant results between UBT and SAT data were subjected to
two different polymerase chain reactions (PCR) in an external laboratory for confirmation of
H. pylori presence. Samples were transported at a temperature of at least −20 ◦C. First, DNA
was extracted in an automated extractor device (KingFisher, Thermo Scientific, Waltham,
MA, USA) employing magnetic particles (MagMax CORE Nucleic Acid Purification Kit,
Applied Biosystems, Foster City, CA, USA) and following the instructions from the man-
ufacturers. PCR amplification was performed in 100 ng of DNA (final volume 50 µL) by
using primer oligonucleotides for the glmM gene and the 16S rRNA region of H. pylori
(SYNLAB Diagnósticos Globales S.A.U., Barcelona, Spain). The threshold detection limit of
the aforementioned techniques is 200–300 copies per gram of faeces. For the amplification
of the H. pylori 16S rRNA region, a nested PCR assay was performed with 30 cycles in each
amplification and hybridisation temperatures of 34 ◦C and 41 ◦C in the first and second
amplifications, respectively. For the amplification of the glmM gene, a PCR assay was
performed with 40 cycles at a hybridisation temperature of 48 ◦C. Detection of the specific
amplified bands (398 bp for 16S rRNA and 294 bp for glmM gene) was performed in 3%
agarose gels. All tests were performed by experienced laboratory professionals, blinded
to the H. pylori status of the samples and to the results of the other tests. To confirm the
presence or absence of H. pylori in faecal samples, the results of both PCRs must be positive
or negative, respectively.
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2.5. Statistical Analysis

Quantitative variables are provided as the mean and the standard deviation (SD).
Categorical variables are expressed as percentages and 95% confidence intervals (CIs). The
statistical significance threshold was set at a p-value < 0.05.

Sensitivity, specificity, positive predictive value (PPV) and negative predictive value
(NPV) and their 95% CIs were calculated by standard methods, and positive and negative
likelihood ratios (LR+ and LR–, respectively), using the UBT results as study gold standard.
The study was reported in compliance with the Standards for the Reporting of Diagnostic
Accuracy Studies (STARD) recommendations [25].

The sample size was calculated based on the formula by Jones et al. [26]. Two dif-
ferent sample size calculations were performed: one each for the pre-treatment and post-
treatment analyses.

Calculations were performed using an expected (desired) sensitivity and specificity of
97%, a precision of 5% and a CI of 95%. Based on published data and previous experience
in our country, the expected pre-treatment prevalence was 45% (of dyspeptic patients
attending a gastroenterology outpatient clinic) and post-treatment prevalence would range
from 20 to 30% depending on the administered treatment (as the effectiveness in clinical
practice ranges from 70 to 80%).

Under these conditions, the estimated required sample size was 100 and 166 patients
for pre-treatment and post-treatment, respectively. It should be taken into consideration
that some doctors are prescribing optimized treatments (four drugs, 14 days), which may
reduce the post-treatment prevalence down to 10–15%. In the worst case scenario (with
only a 10% post-treatment prevalence), given this sample size, and maintaining a 95% CI
and an expected accuracy at 97%, the precision would be 8%.

3. Results

A total of 321 patients were screened in nine centres; of these, 14 were excluded,
leaving 307 patients for enrolment in the study (Figure 1). The baseline characteristics of
the included subjects are shown in Table 1.
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Figure 1. Flow diagram of the enrolled patients.

A STARD flow diagram of the study is shown in Figure 2, including the overall pool
of patients evaluated, the pre-treatment group (i.e., treatment-naïve patients) and the
post-treatment group (i.e., those where a confirmation of eradication was requested).

In two patients, delta values were unclear (between 4‰ and 5‰, measured by IRMS).
In these two patients, the UBT was repeated, and a new stool sample was collected at
least four weeks after the baseline test. Another two faecal samples provided equivocal
LIAISON® results (CLIA values of 0.9–1.1). This problem was solved by immediately
repeating the SAT on another sample from the same specimen, obtaining valid results.



J. Clin. Med. 2022, 11, 5077 6 of 13

Table 1. Characteristics of the included patients.

Variables

Age (mean ± SD) 47.1 ± 14.4
N (%)

Gender (female) 207 (67)
Clinical indication
# Pre-treatment/naïve 145 (47)
# Post-treatment/confirmation 162 (53)
UBT method
# IRMS 118 (38)
# NDIRS 189 (62)
History of peptic ulcer 14 (5)
H. pylori infection prevalence (by UBT) % (95% CI)
# Overall 21 (16–26%)
# Pre-treatment/naïve 29 (21–37%)
# Post-treatment/confirmation 14 (8–19%)

N = 307
N: number of patients included; CI: confidence intervals; UBT: urea breath test; IRMS: isotope ratio mass
spectrometry; NDIRS: non-dispersive isotope-selective infrared spectrometry.
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gold standard negative.

The LIAISON® Meridian H. pylori SA test had an overall sensitivity of 67% (95% CI
55–79%) and a specificity of 97% (95–99%). PPV and NPV were 86% (75–97%) and 92%
(88–95%), respectively. The LR+ and LR– were 23 (11–49) and 0.34 (0.24–0.48), respectively.
Global accuracy was 91% (88–94%) with an area under the ROC curve (AUC) of 0.85
(0.78–0.92).

Sensitivity, specificity, PPV, NPV, accuracy, LR+, LR–, and AUC were calculated
separately for treatment-naïve patients and in the post-treatment group. Results are shown
in Tables 2 and 3, respectively.

In total, 28/307 patients (including seven false positives and 21 false negatives) pre-
sented a discordant result between SAT and UBT. Among the 21 false negatives, four of
six tested with IRMS had a UBT delta value very close to the cut-off point (values between
5.2 and 5.8 being the cut-off point with IRMS 5‰). In addition, 11/15 tested with NDIRS
had a UBT delta value near the cut-off point (with values below 10), and 10/15 had values
equal to or lower than 8.5 (the cut-off point with NDIRS 2.5‰).

Twenty-five of these samples were subjected to a confirmatory PCR. In three discordant
samples, all of them classified as false negatives, the remaining sample was insufficient for
PCR analysis. All stool PCRs were negative for H. pylori DNA detection. The accuracy of
the LIAISON® Meridian H. pylori SA assay was re-analysed, considering these patients as
non-infected. Results are shown in Table 4.
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Table 2. Accuracy of the LIAISON® Meridian H. pylori SA test in treatment-naïve patients.

Comparison SAT
vs. UBT

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

LR+
(95% CI)

LR−
(95% CI)

Global Accuracy
(95% CI)

AUC
(95% CI)

Naïve 74% (59–88) 96% (92–100) 89% (77–100) 90% (84–96) 19 (7–51) 0.27 (0.16–0.45) 90% (84–95) 0.88 (0.80–0.96)
NDIRS naïve 73% (54–92) 93% (86–100) 83% (65–100) 89% (80–97) 11 (4–29) 0.29 (0.15–0.55) 87% (80–95) 0.86 (0.75–0.96)
IRMS naïve 75% (51–99) 100% (99–100) 100% (96–100) 92% (82–100) - 0.25 (0.11–0.58) 93% (86–100) 0.91 (0.79–1.0)

SAT: stool antigen test; UBT: urea breath test; PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR−: negative likelihood ratio; AUC: area
under the ROC curve; IRMS: isotope ratio mass spectrometry, cut-off value 5‰; NDIRS: non-dispersive isotope-selective infrared spectrometry, cut-off value 2.5‰.

Table 3. Accuracy of the LIAISON® Meridian H. pylori SA test in post-treatment patients.

Comparison SAT
vs. UBT

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

LR+
(95% CI)

LR−
(95% CI)

Global Accuracy
(95% CI)

AUC
(95% CI)

Post-treatment 55% (31–78) 98% (95–100) 80% (56–100) 93% (89–98) 25 (8–82) 0.46 (0.29–0.73) 92% (87–96) 0.79 (0.65–0.93)
NDIRS post-treatment 53 % (26–80) 99% (96–100) 90% (66–100) 91% (85–98) 46 (6–336) 0.48 (0.29–0.79) 91% (85–97) 0.81 (0.67–0.95)
IRMS post-treatment 60% (7–100) 96% (90–100) 60% (7–100) 96% (90–100) 16 (3–75) 0.42 (0.14–1.22) 93% (86–100) 0.78 (0.44–1.0)

SAT: stool antigen test; UBT: urea breath test; PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR−: negative likelihood ratio; AUC: area
under the ROC curve; IRMS: isotope ratio mass spectrometry, cut-off value 5‰; NDIRS: non-dispersive isotope-selective infrared spectrometry, cut-off value 2.5‰.

Table 4. Accuracy of the LIAISON® Meridian H. pylori SA test after performing PCR in stool of discordant samples.

Comparison SAT
vs. UBT

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

LR+
(95% CI)

LR−
(95% CI)

Global Accuracy
(95% CI)

AUC
(95% CI)

Overall 94% (85–100) 97% (95–99) 86% (75–97) 99% (97–100) 35 (17–73) 0.07 (0.02–0.20) 97% (95–99) 0.96 (0.91–1.0)
Naïve 91% (80–100) 96% (93–100) 89% (77–100) 97% (94–100) 25 (10–67) 0.09 (0.03–0.27) 95% (91–99) 0.996 (0.99–1.0)

Post-treatment 100% (96–100) 98% (95–100) 80% (56–100) 100% (99–100) 50 (16–153) 0.00 98% (96–100) 0.94 (0.88–1.0)

SAT: stool antigen test; UBT: urea breath test; PPV: positive predictive value; NPV: negative predictive value; LR+: positive likelihood ratio; LR−: negative likelihood ratio; AUC: area
under the ROC curve.
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Mean UBT value (±SD) in treatment-naïve positive patients was 43.3 ± 28.4 and
18.4 ± 15.2 measured by IRMS and NDIRS, respectively. Mean UBT value (±SD) in post-
treatment negative patients was 0.96 ± 0.98 and 0.54 ± 0.52 measured by IRMS and NDIRS,
respectively.

4. Discussion

The present study evaluated the accuracy of an H. pylori diagnostic method, a chemi-
luminescent immunoassay of the LIAISON® Meridian H. pylori SA versus the performance
of the 13C-UBT, defined as the gold standard.

Although high levels of global accuracy (91%) and specificity (97%) were shown with
this novel strategy, the sensitivity was sub-optimal (67%) both in naïve diagnostic testing
(74%) and in post-treatment eradication confirmatory testing (55%). Even though the results
were lower than expected, they were within the range of variability found in a recent meta-
analysis of SATs, which described a high heterogeneity of performance depending on the
brand, or even for the same brand in different populations [22]. Several methodological
aspects should be taken into consideration when extracting conclusions from our results.

First, the choice of 13C-UBT as the unique gold standard method might represent
a limitation in the correct classification of patients as positive or negative for H. pylori
infection. The concern arises because no invasive diagnostic method, such as histological
evaluation, RUT or culture was used as the gold standard, neither a combination of two or
more diagnostic tests. Therefore, using 13C-UBT only as the reference method, misdiagnosis
by the UBT may hide the existence of correct stool classifications by SAT.

Second, and regarding the two different UBT technologies used, multiple studies
and meta-analyses support the high accuracy of NDIRS and its high correlation with
IRMS, with sensitivity and specificity for H. pylori infection diagnosis > 90–95% for both
techniques [27,28]. Conversely, recent studies [29–31] have suggested that NDIRS tests offer
a low specificity, between 47 and 88%, and a low PPV (with Otsuka equipment, including
the POCone spectrophotometer used in our study), with a relatively high false-positive
rate. This could be a consequence of the NDIRS cut-off point set by the manufacturer,
as there is evidence of an increase in specificity from 60 to 90% [30], or from 47.1% to
95.7% [31] by raising the currently recommended cut-off point from 2.5‰ to 8.5‰. In fact,
other studies [29,31] suggest an even larger “grey or borderline area” of 2–10‰ where
the positive UBT results obtained with NDIRS may be less reliable and could possibly be
classified as false positive.

Kwon et al., basing their results on a post-treatment group of 223 UBT-positive patients
with values ranging from 2.5‰ to 10.0‰, found that 34% were false positives as determined
by endoscopic biopsy [31]. Furthermore, there is evidence that when the UBT is positive,
delta figures are usually much higher than the cut-off point [32], in line with our study,
where results showed mean positive UBT values of 43 and 18 measured by IRMS and
NDIRS, respectively.

In this respect, it should be highlighted in our study that the majority of “false nega-
tives” of the SAT (11/15 analysed with NDIRS) were within these borderline values (2.5‰
to 10.0‰). In addition, very recent guidelines recommended the use of IRMS technology as
a first choice UBT reference method, leaving NDIRS as an alternative [33]. Furthermore, it
is remarkable that citric acid is not included in the NDIRS protocol, in contrast to that of
IRMS, as citric acid has proven to make the UBT more robust and is an essential component
of the protocol [2,13].

All the above-mentioned considerations might explain the lower sensitivity of the
LIAISON® Meridian H. pylori SA assay (65%) in the present study when compared to
NDIRS, which raised (to 71%) when compared to IRMS. These data suggest a slightly
lower PPV and specificity of the NDIRS UBT than would be expected. Moreover, it can be
assumed that the higher accuracy of the IRMS UBT is probably due, at least in part, to the
use of citric acid in its protocol.
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Focusing on the benefits of using SAT as a non-invasive method, several advantages
such as rapidity are to be highlighted, since the sample can be delivered with no need to
remain in the hospital or medical centre, thereby reducing work absenteeism, tending to
simplicity in the procedure and subsequently lowering the costs. In addition, some studies
suggested that SAT has the same diagnostic value in patients with distal gastrectomy as
in patients without surgery [14,34] and regardless of treatment with PPIs [35]. However,
these statements are not widely accepted, and further studies are needed. Hence, we
excluded these patients from our protocol. On the other hand, the SAT also has some
disadvantages, including that negative SAT results may not indicate the absence of H. pylori
infection but rather low density of H. pylori in the stomach and a low antigen load in the
stool [16]. However, this disadvantage is common for most non-invasive methods, for
instance, with UBT it has even been suggested to select a lower cut-off value (compared to
the pre-treatment setting) in order to maintain the diagnostic accuracy for the monitoring
of H. pylori eradication [32].

Concerning the SAT methodology, as mentioned in Section 1, SATs can be either based
on ELISA, CLIA or ICA [7]. The former has been the most widely studied and recommended
by international guidelines due to its high diagnostic accuracy [2]. Laboratory-based
CLIAs are widely used in clinical laboratories. This technique has elevated sensitivity
due to the broad contact surface area provided by the particles of the reagent for antigen–
antibody interaction, as well as the increased intra- and inter-assay accuracy inherent
to CLIA versus ELISA methodology. Luminescent transitions of excited molecules or
atoms to a state of lower energy are characterised by electromagnetic radiation dissipated
as photons in the ultraviolet (UV), visible or near-infrared region. These luminescent
reactions are classified according to the energy source involved during the excitation
step; thus, most classical light-emission reactions are referred to as bioluminescence (from
in vivo systems), chemiluminescence (from a chemical reaction, as is the case of this study
protocol), electroluminescence (from electrochemical reaction) and photoluminescence
(from UV, visible or near-infrared radiations). Chemiluminescence reactions are generally
oxidoreduction processes and the excited compound, which is the reaction product, has
a different chemical structure from the initial reactant [36,37]. The technology has the
ability to detect minimal quantities of antigen in stool samples (4 ng/mL), and by using
a photomultiplier, the luminescence signal can be measured down to a few photons [24].
Additionally, automation enables processing a large number of samples in a short period
of time, thereby saving time, providing objective results, minimising mishandling and
ensuring proper traceability. Altogether these characteristics warrant validation studies of
this technique in our setting.

Technological advances allow the use of techniques such as chemiluminescence for the
diagnosis of H. pylori infection, and technological developments also enable progress in the
treatment or control of infection through the use of sensors capable of detecting anti-biofilm
drugs or urease inhibitors [38,39].

The accuracy of the automated LIAISON® Meridian H. pylori SA assay has been previ-
ously evaluated in a limited number of publications. Opekun et al. [40] included 277 patients
and combined different methods including histology, culture and RUT as gold standard,
obtaining a high sensitivity and specificity (95.5% and 97.6%, respectively). However, only
eight patients were included in the post-treatment group. Ramírez-Lázaro et al. [24] in-
cluded 252 untreated patients. Compared to the gold standard (concordance of the RUT,
histopathology and UBT), the test had a sensitivity of 90.1% and a specificity of 92.4%, with
PPV and NPV > 90%. Another evaluation of the test in 103 untreated patients with dys-
pepsia was performed in Spain [41] using the same gold standard (UBT) as in the present
study and reporting results similar to ours, with a sensitivity of 72% and a specificity of
96.2%. However, this latter study was reported only as a conference abstract. Thus, to the
best of our knowledge, our study included the largest number of post-treatment patients in
which confirmation of H. pylori eradication was assessed.
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It has been suggested that in the post-treatment setting the SAT may have a suboptimal
performance given the low prevalence of infection, with PPV around 50% [42]. In this
regard, the present study is in accordance with current literature as the LIAISON® Meridian
H. pylori SA assay accuracy was inferior in the post-treatment setting (sensitivity 55%,
specificity 98%, AUC 0.79) than in naïve patients (sensitivity 74%, specificity 96%, AUC
0.88) while maintaining an acceptable post-treatment PPV of 80% despite a prevalence of
H. pylori of only 14% (consequence of an eradication rate of 86%). Therefore, despite the
fact that meta-analyses claim that H. pylori monoclonal SAT can also be used in the post-
treatment setting with high sensitivity and specificity [19], it may have worse diagnostic
performance than in the naïve setting. Nevertheless, considering the data after performing
PCR on stool from discordant samples, excellent accuracy values were also obtained in the
post-treatment setting (sensitivity 100%, specificity 98%, AUC 0.94).

The use of molecular techniques, such as stool PCR, is increasing not only for diagnosis
but also for non-invasive detection of bacterial antibiotic resistance [43]. The overall
sensitivity of stool PCR as a diagnostic test, depending on target gene, ranges between 40
and 100%, being the highest for the 23s RNA and 16s RNA genes, the latter with sensitivity
and specificity close to 100% in some studies [44]. The two most consistent meta-analyses,
one including twenty-six studies and the other one including seven studies in children,
calculated a sensitivity range of 70–80% [15,45].

The genes used in our study, glmM and 16s rRNA, have a sensitivity of 56% and 74%,
and a high specificity of 99% and 87%, respectively, with an excellent AUC (≥0.95), placing
them as two of the first-choice genes for stool PCR testing [45]. In addition, we used a nested
PCR for the amplification of the 16s rRNA gene, a front-line technique due to its higher
sensitivity and the ability to amplify the target sequence at a lower concentration, as it
involves two rounds of amplification [15,16,45]. Furthermore, combination of several target
genes might help to improve the diagnostic performance by reducing the possibility of
missed detection [16]. The combination of these two genes in gastric biopsies of 387 patients
provided a sensitivity and specificity of 92.9% and 92.4%, respectively, which is superior to
histopathology and RUT [46].

Therefore, we re-analysed the data by considering our 25 discordant patients as “true
negatives”, with both negative genes in stool samples, especially in view of the borderline
positive value of the UBT in most of them. This improved the accuracy of the LIAISON®

H. pylori SA up to a sensitivity of 94%, a specificity of 97%, and an AUC of 0.96.
Our study has some limitations, such as not having an invasive method or a com-

bination of several diagnostic methods as the gold standard or using two different UBT
technologies. On the other hand, our study has several strengths: the inclusion of prospec-
tively evaluated patients, the multicentre study design, its large sample size, the inclusion
not only of pre-treatment but also post-treatment patients, and the performance of stool
PCR analysis of discordant samples.

5. Conclusions

In conclusion, the LIAISON® H. pylori SA chemiluminescent diagnostic assay showed
a good accuracy for diagnosis of H. pylori infection, both pre- and post-treatment.
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